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[1] Most existing stochastic models are developed for unimodal porous media that may be
well characterized with only the first two statistical moments. However, the distribution of
hydraulic properties, such as hydraulic conductivity, may possess a multiplicity of modes;
thus the first two moments may not be adequate to characterize properties of such porous
media. In turn, the stochastic models developed for unimodal porous media may not be
applicable to flow and transport in a multimodal heterogeneous porous medium. This study
investigates under what circumstances the second-order moment-based stochastic models
are applicable to multimodal heterogeneous porous media. We assume that a porous
medium is composed of a number of materials (categories), each of which may have a
different mean, variance, and correlation scale. The distribution of materials in the domain
is characterized by indicator random variables. We first derive analytical expressions for the
mean and covariance of the log saturated hydraulic conductivity (ln Ks) of the multimodal
porous medium in terms of categorical proportions, transition probability among
categories, and covariances of indicator random variables. We express the covariance in
terms of the statistics of materials in the porous medium, which allows us to accurately
evaluate the variance and the correlation length of the composite ln Ks field. We then solve
the second-order moment equations for the ‘‘equivalent’’ unimodal field with an
exponential covariance with a single correlation scale computed for the composite field. On
the other hand, we conduct two sets of Monte Carlo simulations: one with multimodal
random fields, and the other with ‘‘equivalent’’ unimodal random fields. Examples for
porous media with two materials are given. Numerical experiments show that a bimodal ln
Ks field may be well approximated by an equivalent unimodal field when one of the two
modes is dominant, under which condition the applicability of the second-order moment-
based model is subject to the same limitation of relatively small variance as that for
unimodal fields. When the bimodal distribution has two more or less equally important
modes, although it cannot be adequately represented by an equivalent unimodal
distribution, the second-order moment-based stochastic model seems to be applicable to
systems with larger composite variances than it does for an one-mode-dominant
distribution. INDEX TERMS: 1829 Hydrology: Groundwater hydrology; 1869 Hydrology: Stochastic

processes; 3230 Mathematical Geophysics: Numerical solutions; KEYWORDS: stochastic, heterogeneity,

bimodal, multimodal, multiscale
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1. Introduction

[2] It is well known that geological formations are
ubiquitously heterogeneous. Stochastic approaches to flow
and transport in heterogeneous porous media have been
extensively studied in the last two decades, and many
stochastic models have been developed [e.g., Dagan,
1989; Gelhar, 1993; Zhang, 2002]. Most of these models,
however, assume that the porous medium being studied
can be characterized by the first two moments (mean and
covariance) and the covariance can be described with one
single correlation scale. Although some field studies [e.g.,

Hoeksema and Kitanidis, 1984; Sudicky, 1986; Gelhar,
1993] have shown that the hydraulic conductivity in some
cases is unimodal and can be characterized by a spatial
correlation structure defined by a covariance (or vario-
gram) with a single, finite length scale; this in general
may not be true. For example, in a sand-shale (or a
fractured porous) formation, the hydraulic conductivity
may have a large contrast between sand and shale (or
fracture and matrix) and may thus exhibit a bimodal
distribution. In a bimodal or more generally, multimodal
medium, the first two moments are not adequate for
describing its distribution. Hence, moment-based stochas-
tic models developed for unimodal heterogeneous porous
media may not be directly applicable to flow and trans-
port in multimodal heterogeneous porous media. One
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question we would like to ask is under what circum-
stances the moment-based stochastic models developed
mainly for flow in the unimodal heterogeneous media
can be applied directly to flow in the multimodal hetero-
geneous systems.
[3] A few studies have been conducted on flow and

transport in a multimodal porous medium [Desbarats,
1987, 1990; Rubin and Journel, 1991; Rubin, 1995; Russo
et al., 2001]. Desbarats [1987, 1990] modeled the perme-
ability of a sandstone reservoir as a bimodal attribute of
two possible values, Kss and Ksh, assuming that the
discontinuous low-permeability shale streaks in the sand-
stone reservoir are the dominant source of heterogeneity
and that the variation of permeability within the sandstone
or shale is of secondary importance. Variations within
sandstone or shale are ignored. Rubin and Journel
[1991] decompose the random function of interest, say,
Z(x), into a series of indicator random functions, which
allows assigning specific spatial structure to each class of
Z values. The effect of bimodal heterogeneity on transport
has been studied by Rubin and Journel [1991] and Rubin
[1995]. Both assumed that the spatial distribution of Z1(x)
and Z2(x) are independent of the indicator random variable
and thus the spatial structures of Z1, Z2, and the indicator
random variable can be assigned arbitrarily. Russo et al.
[2001] investigated flow and transport of a tracer solute in
variably saturated bimodal heterogeneous porous media
and in the corresponding ‘‘equivalent’’ unimodal media.
Again, the indicator random variable is modeled by
assigning its own spatial structure, independent of the
properties of the composite materials. It is known that
the mean and variance of the indicator random variables
are related to the volumetric proportion of each individual
material. For a bimodal porous medium, for example,
hIi(x)i = pi and sIi

2 = p1p2, where pi and Ii(x) are the
volumetric proportion of material i and its indicator random
variable. Therefore, it may not be reasonable to assume that
the correlation structures of the indicator variables can be
assigned arbitrarily. Thus, the second question we would
like to ask is how to quantitatively determine spatial
structures of the indicator random variables based on the
volumetric proportions and spatial structures of the
materials.
[4] The Markov chain method has been applied to geo-

logical formations with different materials [Krumbein,
1968; Krumbein and Dacey, 1969; Gingerich, 1969; Har-
baugh and Bonham-Carter, 1970; Dacey and Krumbein,
1970; Miall, 1973; Agterberg, 1974; Ethier, 1975; Lin and
Harbaugh, 1984; Rolke, 1991; Politis, 1994; Goovaerts,
1994, 1996; Carle, 1996, 1997; Carle and Fogg, 1996,
1997; Carle et al., 1998]. The distribution of materials is
characterized by the transition probability between different
materials. It has been shown [Carle, 1996; Carle and Fogg,
1997] that, in characterizing the structure of the indicator
random variables, the transition probability between differ-
ent categories is equivalent to the autocovariance of the
indicator random variables and the former can be easily
derived from field measurements.
[5] The aims of this study are (1) to derive explicit

expressions for the covariance function of indicator random
variables, based on properties of different materials and (2)
to discuss the general requirements at which the second-

order moment-based stochastic model with a covariance
function of a single correlation length may be applied to a
porous medium with multimodal heterogeneity.

2. Mean and Covariance of Multimodal
Heterogeneous Fields

[6] Let Y(x) be an attribute of interest, such as log
hydraulic conductivity, and be expressed as

Y xð Þ ¼
XM
i¼1

Ii xð ÞYi xð Þ ð1Þ

where Yi xð Þ; i ¼ 1;M , stands for the attribute Y(x) of
different materials (e.g., facies) at location x,M is the number
of categories (materials), and Ii xð Þ; i ¼ 1;M , are indicator
spatial random variables defined over a domain � as

Ii Xð Þ ¼ 1 if category i occurs at location X

0 otherwise:

�
ð2Þ

For a continuous attribute Y(x), Ii(x) can be defined using a set
of different cutoffs [Deutsch and Journel, 1992; Rubin and
Journel, 1991]. It is clear that �iIi(x) = 1, for any x 2 �. By
definition, the joint probability of Ii(x) and Ij(C) can be
expressed as

pij X;Cð Þ ¼ Pr Ii Xð Þ ¼ 1; Ij Cð Þ ¼ 1
� �

¼ E Ii Xð ÞIj Cð Þ
� �

ð3Þ

and their marginal probability as

pi Xð Þ ¼ Pr Ii Xð Þ ¼ 1f g ¼ E Ii Xð Þf g
ð4Þ

pj Cð Þ ¼ Pr Ij Cð Þ ¼ 1
� �

¼ E Ij Cð Þ
� �

:

The transition probability tij(x,C) is defined as the probability
of category j occurring at location C, given the condition that
category i occurs at location x:

tij x;Cð Þ ¼ Pr Ij Cð Þ ¼ 1 Ii xð Þj ¼ 1
� �

¼ E Ii xð ÞIj Cð Þ
� �

=pi xð Þ: ð5Þ

The covariance of the indicator variables can be given as

CI ;ij x;Cð Þ ¼ E Ii xð ÞIj Cð Þ
� �


 E Ii xð Þf gE Ij Cð Þ
� �

: ð6Þ

Substituting (3)–(5) into (6), the covariance of indicator
random variables can be expressed in terms of categorical
proportions and transitionprobability tij

CI ;ij x;Cð Þ ¼ tij x;Cð Þ 
 pj Cð Þ
� �

pi xð Þ: ð7Þ

It should be noted that, since tij(x,C)pi(x) = tji(C, x)pj(C), the
covariances of the indicator variables are symmetric with
respect to locations x and C, but the transition probability
tij(x,C) in general is not symmetric with respect to its indexes
i and j.
[7] It has been argued [Rubin and Journel, 1991;

Rubin, 1995] that Ii and Yj are mutually uncorrelated.
Under this condition, the mean and covariance of Y can
be derived as

hY xð Þi ¼
XM
i¼1

E Ii xð Þf gE Yi xð Þf g ¼
XM
i¼1

pi xð ÞhYi xð Þi ð8Þ
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CY x;Cð Þ ¼ E Y xð Þ 
 Y xð Þh i½ � Y Cð Þ 
 Y Cð Þh i½ �f g

¼
XM
i; j¼1

tij x;Cð Þpi xð ÞCY ;ij x;Cð Þ

þ
XM
i; j¼1

tij x;Cð Þ 
 pj Cð Þ
� �

pi xð Þ Yi xð Þh i Yj Cð Þ
� �

; ð9Þ

or, in terms of the covariance of indicator random variables,
(9) becomes

CY x;Cð Þ ¼
XM
i; j¼1

CI ;ij x;Cð Þ þ pi xð Þpj Cð Þ
� �

CY ;ij x;Cð Þ

þ
XM
i; j¼1

CI ;ij x;Cð Þ Yi xð Þh i Yj Cð Þ
� �

: ð10Þ

In particular, because tij(x, x) = dij, the variance of log
hydraulic conductivity can be derived from (9) as

s2Y xð Þ ¼
XM
i¼1

pi xð Þs2Yi xð Þ þ
XM
i¼1

pi xð Þ Yi xð Þh i2



XM
i; j¼1

pi xð Þpj xð Þ Yi xð Þh i Yj xð Þ
� �

: ð11Þ

For second-order stationary media for which pi(x) = const,
hYi(x)i= const,CY (x,C) =CY (x
C), and tij(x,C) = tij(x
C),
we have

CI ;ij hð Þ ¼ tij hð Þ 
 pj
� �

pi ð12Þ

Yh i ¼
XM
i¼1

pi Yih i ð13Þ

CY hð Þ ¼
XM
i; j¼1

CI ;ij hð Þ þ pipj
� �

CY ;ij hð Þ þ
XM
i; j¼1

CI ;ij hð Þ Yih i Yj
� �

ð14Þ

s2Y ¼
XM
i¼1

pis2Yi þ
XM
i¼1

pi Yih i2

XM
i; j¼1

pipj Yih i Yj
� �

ð15Þ

where h is the separation distance. For statistically
anisotropic media, h should be replaced by a separation
vector. In the case of M = 2, (13)–(15) simplifies to well
known expressions for bimodal porous media [Desbarats,
1990; Rubin, 1995; Winter and Tartakovsky, 2000; Zhang,
2002, pp. 73–76].

3. Covariance of Indicator Random Functions

[8] In the last section, we expressed the covariance of the
composite log hydraulic conductivity field in terms of
covariance functions of the indicator random variables. It
is commonly assumed in the literature that the correlation
structures of the indicator random variables are independent
of each individual category [Rubin and Journel, 1991;
Rubin, 1995; Russo et al., 2001]. In this section, we derive
expressions for the covariance of indicator random variables
using the Markov chain approach, based on the statistics of
different materials in a porous medium.

[9] It is assumed in a three-dimensional Markov chain
model that spatial variability in any direction can be
characterized by a one-dimensional Markov chain model
[Lin and Harbaugh, 1984; Politis, 1994]. For a one-dimen-
sional Markov chain model, the continuous-lag transition
probability matrix T for any lag h can be written as [Carle,
1996; Carle and Fogg, 1997]:

T hð Þ ¼ eRh ð16Þ

where R is an M � M transition rate matrix whose entry rij
represents the rate of change from category i to category j
per unit length of category i in the given direction. If the
transition rate matrix R is known, the transition probability
matrix T can be evaluated by an eigenvalue analysis. Let
hi; i ¼ 1;M , be eigenvalues of the transition rate matrix R
and Zi, i ¼ 1;M , be their corresponding spectral component
matrixes that are evaluated by

Zi ¼
Y
m 6¼i

hmE
 Rð Þ=
Y
m6¼i

hm 
 hið Þ ð17Þ

where E is the identical matrix, (16) then becomes

T hð Þ ¼
XM
i¼1

ehihZi; ð18Þ

which means that the transition probability is the summation
of a series of exponential terms. By recalling (12), (18)
implies that the covariance of indicator random functions is
a summation of exponential terms.
[10] Now we focus on how to evaluate R and relate the

covariances of indicator random variables to the statistics of
different materials in the porous medium. If we have a
transition probability matrix T = (tij) measured at a discrete
lag �h in a direction f, the transition rate matrix Rf can be
computed [Agterberg, 1974; Carle, 1996; Carle and Fogg,
1997]

Rf ¼
ln T �hf


 �
 �
�hf

ð19Þ

which again involves an eigenvalue analysis. In this case,
the transition probability matrix for the direction f at any
lag can be calculated using (16) to (18), and the proportions
of all categories can be calculated by multiplying the
transition matrix to itself a number of times until the product
is stablized.
[11] In reality, discrete lag transition probability matrix in

the vertical direction may be obtained from, for example,
borehole data. Thus transition rate matrix can be computed
using (19). However, in the lateral directions, sparse data
may prevent directly measuring the discrete lag transition
probability matrix. In this case, one is unable to calculate R
using (19); thus, some alternative ways for deriving R are
needed.
[12] Taking the derivative of (16) and letting h = 0, we

have [Ross, 1993; Carle and Fogg, 1997]

R ¼ dT hð Þ
dh

����
h¼0

: ð20Þ
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Because the transition probability tij has to satisfy the
following equations:

XM
j¼1

tij ¼ 1 i ¼ 1;M ð21Þ

XM
i¼1

pitij ¼ pj j ¼ 1;M ; ð22Þ

it follows immediately that transition rates rij satisfy [Ross,
1993; Carle and Fogg, 1997]

XM
j¼1

rij ¼ 0 i ¼ 1;M ð23Þ

XM
i¼1

pirij ¼ 0 j ¼ 1;M : ð24Þ

Equations (23) and (24) imply that det(R) = 0; therefore,
one of the eigenvalues of R, say h1, must be zero. The
spectral component matrix Z1 corresponding to this zero
eigenvalue has special meaning, i.e., any row of Z1

represents the proportions of all categories,

Z1 ¼

p1 p2 . . . pM
p1 p2 . . . pM

. . .
p1 p2 . . . pM

2
664

3
775: ð25Þ

Equations (23) and (24) give 2M 
 1 independent equa-
tions, because one of the 2M equations can be derived from
other 2M 
 1 equations. More equations are needed for sol-
ving R.
[13] For a given porous medium, proportions of catego-

ries are the same in any direction. Therefore, once the
transition matrix T (and so R) in one direction f0 is known,
R in any other direction f can be estimated with some
additional information. Carle [1996] shows that the diago-
nal terms of the transition rate matrix Rf is related to mean
lengths:

rii;f ¼ 
 1

Li;f
i ¼ 1;M : ð26Þ

In practice, if the mean length of one category, say L1,f, in
direction f is known, the mean lengths for all other
categories in this direction can be calculated from
Li;f ¼ piL1;f=p1; i ¼ 1;M .
[14] For a bimodal porous medium, either knowing

proportions and one mean length in the direction f, or
knowing two mean lengths in this direction is enough for
solving R (see Appendix A), and the transition probability
tij can be written as

tij hð Þ ¼ pj þ dij 
 pj

 �

e
h=lI ð27Þ

where lI is defined as

lI ¼ p1L2 ¼ p2L1 ¼ L1L2= L1 þ L2ð Þ; ð28Þ

which is the harmonic mean of the two mean lengths in the
given direction. Substituting (27) into (12), one obtains the
covariance of the indicator random variables:

CI ;ij hð Þ ¼ pi dij 
 pj

 �

e
h=lI : ð29Þ

Because of the constraint I1(x) = 1 
 I2(x), the tensor CI is
symmetric and also CI,11(h) = CI,22(h). It is seen from (29)
that lI defined in (28) is in fact the correlation length of the
indicator random variable. It should be emphasized that if
the mean lengths of the materials are direction-dependent,
the correlation length lI is also direction-dependent. For a
stationary field, because the categorical proportions in all
directions are the same, the isotropic ratio of the indicator
random variable between any two directions equals the ratio
of mean lengths of the any category in these two directions,
i.e., lI

(1)/lI
(2) = L1

(1)/L1
(2) = L2

(1)/L2
(2).

[15] For a porous medium with three materials, the
transition probability can be written as (Appendix B)

tij hð Þ ¼ pj þ
eh2h

h2 
 h3
h3 pj 
 dij

 �

þ rij
� �

þ eh3h

h3 
 h2
h2 pj 
 dij

 �

þ rij
� �

ð30Þ

where h2 and h3, given in Appendix B, are two nonzero
(negative) eigenvalues of the transition rate matrix R = (rij)
(see Appendix B). Substituting (30) into (12) gives the
covariance function of the indicator random variables as

CI ;ij hð Þ ¼ pie
h2h

h2 
 h3
h3 pj 
 dij

 �

þ rij
� �

þ pie
h3h

h3 
 h2
h2 pj 
 dij

 �

þ rij
� �

: ð31Þ

Once the covariances of the indicator random variables
CI,ij(h) are known, CY (h) can be calculated using (14), and
the integral scale of the Y field can be derived by integrating
CY (h).

4. Bimodal Media

[16] We now concentrate on media with two materials: Y1
and Y2. Assuming independence between Y1(x) and Y2(x)
and an exponential covariance function for each Yi(x),

CYi hð Þ ¼ s2Yi e

 h

li i ¼ 1; 2 ð32Þ

and substituting (29) and (32) into (14), one obtains

CY hð Þ ¼ p21s
2
Y1
e

 h

l1 þ p22s
2
Y2
e

 h

l2 þ p1p2 Y1h i 
 Y2h ið Þ2e

h
lI

þ p1p2e

 h

lI s2Y1e

 h

l1 þ s2Y2e

 h

l2

� �
: ð33Þ

In (33), p1 + p2 = 1, s1
2 and l1 are the respective variance

and correlation length of Y1(x), s2
2 and l2 are the respective
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variance and correlation length of Y2(x), and lI is the
correlation length of the geometry indicator. It is seen from
(28) that lI = p2L1 = p1L2, where L1 and L2 are the mean
lengths of materials 1 and 2, respectively. From (33), CY (h)
is the summation of five parts. The first two terms in (33)
are contributions from materials 1 and 2, respectively; the
third term is the contribution due to the geometry indicator
random variable; and the last two terms are contributions
due to the combination of the statistics of different
materials and the spatial distribution of two materials
(controlled by the indicator random variable). Rubin [1995]
and Russo et al. [2001] have expressions similar to (33),
but the major difference is that instead of assigning
arbitrary correlation structure to the indicator variable, we
expressed it explicitly as the harmonic mean of mean
lengths of the two materials.
[17] The variance of Y(x) can be obtained by setting h = 0

in (33)

s2Y ¼ p1s2Y1 þ p2s2Y2 þ p1p2 Y1h i 
 Y2h ið Þ2: ð34Þ

Figure 1 shows the variance of the log hydraulic
conductivity Y(x) varying with parameters p1, b = sY1

2 /sY2

2 ,
and the contrast of the mean Y(x) between two materials, a =
hY2i 
 hY1i. Given a = 1.0 and sY2

2 = 1.0, at p1 = 0.0, the bi-
modal system degenerates to a unimodal system and the
variance sY

2 = sY2

2 = 1.0 (Figure 1a). When p1 = 1.0, the
medium becomes unimodal and its variance depends solely
on sY1

2. For a small p1, an increase of sY1

2 (i.e., increase of b,

for the fixed sY2

2 ) has a little effect on the total sY
2. For fixed

proportions (Figure 1b), an increase in both a or b increases
sY
2; however, it seems that the increase of the contrast

between two materials a has a relatively larger effect on the
total heterogeneity sY

2. Figure 1c illustrates the effect of
proportion p1 and a on sY

2 for given b = 1.0. Certainly, when
one material in the field is dominant (i.e., a small p1 or large
p1), the contrast in the mean Y(x) between two materials
does not have a great effect on the total sY

2 because the third
term in (34) is relatively small due to a small p1p2. The
curves in Figure 1c are symmetric with respect to proportion
p1 = 0.5. However, when b 6¼ 1 this symmetry does not exist.
Figure 1d depicts the effect of proportion p1 and a for a
fixed b = 2.0.
[18] To investigate the effect of heterogeneity of each

individual material on the total heterogeneity, we plot sY
2

against p1 for different values of a, b, and sY2

2 (Figure 2).
Figure 2a shows the dependency of sY

2 on a for given sY1

2 =
sY2

2 ; Figure 2b illustrates the similar cases as in Figure 2a but
with different b values for given sY2

2 = 1. It is clear from
Figures 2a and 2b that, for a relatively large contrast in the
mean log hydraulic conductivity between two materials, the
contribution of the heterogeneity in each individual
material to the total heterogeneity is less important. This
confirms Desbarats’ [1987] claim that the variation of
permeability within sandstone or shale is of secondary
importance because of the large contrast between sandstone
and shale.
[19] Although I(x)(=I1(x)), Y1(x) and Y2(x) are assumed

to be mutually uncorrelated (in the sense that given I(x) = 1,

Figure 1. Variance of the composite log hydraulic conductivity as a function of proportions of
materials, the contrast between materials, and variations in each material.
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the value of Y1(x) is independent of I(x)), the correlation
lengths l1 and l2 of Y1(x) and Y2(x) are not truly unrelated
to lI of I. This is because the correlation length l1 is
constrained by the geometry of facies I1(x) = 1, e.g., through
its mean length L1. Intuitively, the correlation length of each
category depends on its mean length, and the category with
the smaller mean length may have a smaller correlation
length. It is reasonable to expect the range l1 of the log
hydraulic conductivity Y1(x) not to exceed the facies geo-
metrical mean length L1, i.e., l1 � L1. For an exponential
covariance, one usually has l1 = 3l1 and thus 3l1 = l1 � L1
= lI/p2. In turn, one has

l1 �
lI

3 1
 p1ð Þ : ð35Þ

Similarly, for facies I2(x) = 1,

l2 �
lI

3 1
 p2ð Þ : ð36Þ

which are consistent with that of Ritzi [2000, Table 1].
Equations (35) and (36) imply that, in numerical simulations
of flow and transport in a bimodal heterogeneous porous
medium, the correlation lengths of Y1(x), Y2(x), and the
indicator variable I should not be assigned independently,
without any constraints. While (35)–(36) estimate the
maximum correlation lengths that the attribute Y1(x) and
Y2(x) may attain, the actual values of l1 and l2 depend on
the actual random fields, Y1(x) and Y2(x). The maximum
correlation lengths for Y1(x) and Y2(x) as functions of the
proportion p1 are illustrated in Figure 3, which shows that
the correlation length of each category may be either smaller
or larger than the correlation length of the indicator variable,
depending on its proportion. For example, if p1 = 0.2 and L1
= 1.5, one has L2 = p2L1/p1 = 6.0, lI = p1L2 = p2L1 = 1.2, l1
� 0.5 and l2 � 2.0. The integral scale of Y(x) can be
derived by integrating (33)

lY ¼ 1

s2Y

Z 1

0
CY hð Þdh

¼ p21s
2
Y1
l1 þ p22s

2
Y2
l2 þ p1p2 Y1h i 
 Y2h ið Þ2lI þ p1p2s2Y1

l1lI
l1þlI

þ p1p2s2Y2
l2lI
l2þlI

p1s2Y1 þ p2s2Y2 þ p1p2 Y1h i 
 Y2h ið Þ2
: ð37Þ

Figure 3. Maximum correlations length for each material as a function of proportion p1.

Figure 2. The effect of heterogeneity of each individual material on the total heterogeneity.
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The dependency of the integral scale of the composite log
hydraulic conductivity field lY is also illustrated in Figure 3
for sY1

2 = sY2

2 = 1 and two different values of a = hY1i 

hY2i. It is seen from Figure 3 that the integral scale of the
composite log hydraulic conductivity field lY may be larger
or smaller than lI, depending on p1 and a.

5. Numerical Implementation

[20] To investigate the applicability of the second-order
moment-based stochastic model with a single correlation
length to a multimodal system, we illustrate a few examples
for flow in a two-dimensional horizontal saturated porous
medium with two materials. The domain of 12 m � 12 m is
uniformly discretized into 60 � 60 square elements with a
size of 0.2 m � 0.2 m. Three factors have been considered in
material specifications in case design: the volumetric frac-
tions of two materials; the contrast of the mean log hydraulic
conductivity Y(x) = ln Ks(x) between two materials; and the
variability of Y(x) within each material. Detailed specifica-
tions for materials in each case are listed in Table 1, where p1
and p2 are the fractions of two materials; hY1i and hY2i are
their mean log hydraulic conductivities; and sYi

2 and li are
the variance and the correlation length for the ith material.
The values of hY1i and hY2i are chosen such that the
weighted mean Y(x) for the composite field is zero. The
parameters in the last three columns of Table 1, hY i, sY2, and
lY, are the respective (weighted) means, variances and
correlation lengths of the composite fields that are
calculated using (13), (34), and (37). These three parameters
are called ‘‘equivalent’’ parameters and used later to define
the ‘‘equivalent’’ unimodal porous medium.

[21] In all cases, the left and right boundaries are prescribed
as constant hydraulic head of 10.5m and 10.0m, respectively,
and the lateral are prescribed as no-flow boundaries. This
produces a mean flow from the left to the right.
[22] Cases 1–4 ( p1 = 0.3) are designed against cases

5–10 ( p1 = 0.5) to examine the effects of categorical
proportions and the symmetry of the Y distribution. The
pair of case 2k-1 and case 2k (k ¼ 1; 5) is compared with
each other to explore the effect of the contrast of the
mean Y(x) between the two materials. The effect of
heterogeneity within each individual material is also exam-
ined by comparing case 1 versus case 3 (and also case 2
versus case 4, case 5 versus case 7 and case 9, case 6
versus case 8 and case 10). Cases 7 and 8 have volumetric
fractions p1 = p2 = 0.5 but with an asymmetric Y dis-

tribution due to different degrees of heterogeneity within
the two materials.
[23] For each case, we conducted two sets of Monte Carlo

simulations and compared their results against those from
the second-order moment-based stochastic models [Zhang
and Winter, 1998; Zhang and Lu, 2002]. The second-order
moment-based models are developed by first deriving equa-
tions governing the first two statistical moments of flow
quantities with the technique of perturbation expansions and
then solving these moment equations numerically. The
results from these models are directly the first two moments
of the flow quantity of interest. Because the moment
equations are solved numerically, this approach can handle
any arbitrarily complex covariance functions as well as flow
nonstationarity caused by the presence of medium non-
stationarity or finite flow boundaries. The details of this
approach can be found in the works of Zhang and Winter
[1998], Zhang and Lu [2002], or Zhang [2002].
[24] The first set of Monte Carlo simulations was per-

formed for flow in a porous medium with two materials. For
this purpose, similar to the two-stage procedure [Deutsch
and Journel, 1992] we first generated 5000 two-dimensional
61 � 61 (Y(x) is defined at nodes) Markovian random fields
of two categories with given mean lengths L1 = 3.6 m and
L2 = p2L1/p1, using Transition Probability Geostatistical
Software (T-PROGS) [Carle et al., 1997]. We then generated
10,000 two-dimensional 61 � 61 unconditional Gaussian
realizations with zero mean, unit variance, and a correlation
length li =1.20 m (assuming the same correlation length for
both materials, i.e., l1 = l2), using a sequential Gaussian
random field generator sgsim from GSLIB [Deutsch and
Journel, 1992]. The quality of the generated Markovian
random fields was first checked by comparing their ensem-
ble mean and variance with the specified mean and var-
iance, i.e., hI(x)i = hI1(x)i = p1 = L1/(L1 + L2) and sI

2(x) =
p1p2 = L1L2/(L1 + L2)

2. The variogram calculated from the
generated Markovian realizations was compared with the
analytical, exponential model g(h) = sI

2 [1.0 
 exp(
h/lI)]
(Figures 4a–4d), where lI = L1L2/(L1 + L2). The quality of
the generated Gaussian realizations has also been checked
in a similar manner. All these comparisons indicate that both
Gaussian realizations and Markovian realizations satisfy the
specified mean, variance, and correlation length very well.
In generating these Markovian realizations, the correlation
length lI is not independently given but determined with the
mean lengths for two materials specified. The correlation
lengths l1 and l2 of log hydraulic conductivities Y1 and Y2

Table 1. Statistical Parameters for All Illustrative Examples

p1 p2 hY1i hY2i sY1

2 sY2

2 li lI hYi sY
2 lY

Case 1 0.3 0.7 
1.4 0.6 0.1 0.1 1.2 2.52 0.0 0.94 2.362
Case 2 0.3 0.7 
2.8 1.2 0.1 0.1 1.2 2.52 0.0 3.46 2.477
Case 3 0.3 0.7 
1.4 0.6 2.0 2.0 1.2 2.52 0.0 2.84 1.476
Case 4 0.3 0.7 
2.8 1.2 2.0 2.0 1.2 2.52 0.0 5.36 1.967
Case 5 0.5 0.5 
1.0 1.0 0.1 0.1 1.2 1.80 0.0 1.10 1.724
Case 6 0.5 0.5 
2.0 2.0 0.1 0.1 1.2 1.80 0.0 4.10 1.780
Case 7 0.5 0.5 
1.0 1.0 0.1 2.0 1.2 1.80 0.0 2.05 1.370
Case 8 0.5 0.5 
2.0 2.0 0.1 2.0 1.2 1.80 0.0 5.05 1.625
Case 9 0.5 0.5 
1.0 1.0 2.0 2.0 1.2 1.80 0.0 3.00 1.240
Case 10 0.5 0.5 
2.0 2.0 2.0 2.0 1.2 1.80 0.0 6.00 1.520
Case 11 0.5 0.5 
3.0 3.0 2.0 2.0 1.2 1.80 0.0 11.00 1.647
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satisfy the constraints given in (35) and (36). It is worthy to
note that the nearly perfect match between the sample
variogram computed from Markovian random fields and
the exponential variogram confirms numerically the correct-
ness of the expression for the indicator covariance (29) with
the correlation length lI (28).
[25] Each Markovian random field is then combined with

two Gaussian continuous realizations that are scaled from
zero mean and unit variance to the specified means and

variances of the two categories to form a new random field
Y according to

Y ið Þ xð Þ ¼ f
ið Þ

1 xð ÞsY1 þ Y1h i if I ið Þ xð Þ ¼ 0

f
ið Þ

2 xð ÞsY2 þ Y2h i if I ið Þ xð Þ ¼ 1
i ¼ 1; 2; . . . ; 5000

(

ð38Þ

where fj
(i) is the ith continuous random field for the jth

material, I (i) is the ith Markovian realization, hY1i and hY2i

Figure 5. Examples of (a) a Markovian realization and (b) a composite log hydraulic conductivity field
combined from this Markovian realization and two Gaussian realizations.

Figure 4. Comparison of variograms calculated using the analytical model and using generated
Markovian realizations.
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Figure 6. Histograms of the composite log hydraulic conductivity fields for numerical simulation cases
1–10.
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are the mean log hydraulic conductivities for two categories,
respectively, and sY1

and sY2
are the standard deviations of

log hydraulic conductivities for the categories, respectively.
As an example, one bimodal Markovian realization with
proportion p1 = 0.3 and the composite bimodal realization
for case 2 are shown in Figure 5, with a weighted mean hY i =
0.0 and a total variance sY

2 = 3.46. The histograms of the
generated log hydraulic conductivity realizations for cases
1–10 are shown in Figure 6, where each histogram is
obtained from 18,605,000 (= 61 � 61 � 5,000) data points.
For each realization, the saturated steady state flow equation
is solved using Finite-Element Heat- and Mass- Transfer
code (FEHM) developed by Zyvoloski et al. [1997]. The
convergence of Monte Carlo simulations is checked
graphically by selecting some points in the domain and
plotting the ensemble statistics of head and fluxes at these
points against the number of Monte Carlo simulations.
Figures 7a and 7b show the ensemble behavior of mean
head, head variance, and mean fluxes at the center of the
flow domain for case 10 (sY

2 = 6.0) as functions of the num-
ber of Monte Carlo simulations. It is seen from the Figure 7
that 5000 realizations are adequate for flow with given
boundary conditions. These Monte Carlo simulation results,
based on bimodal random fields, are termed ‘‘bimodal
Monte Carlo simulations’’ and are considered the ‘‘true’’
solution that is the basis for comparison between different
approaches.

[26] The second set of Monte Carlo simulations is done
for the ‘‘equivalent’’ unimodal fields with exponential
covariance models. For each case, we generated 5000
Gaussian continuous realizations with the mean, variance,
and integral scale computed for the composite fields, as
shown in the last three columns of Table 1. These Monte
Carlo simulations are termed ‘‘unimodal Monte Carlo
simulations.’’ The convergence check for unimodal Monte
carlo simulations of case 10 in the center of the flow domain
is also shown in Figures 7c and 7d.
[27] Two more approaches are compared against bimodal

and unimodal Monte Carlo simulations. By the term ‘‘bimo-
dal moment-based approach,’’ we mean that the second-
order moment-based stochastic model [Zhang and Winter,
1998; Zhang and Lu, 2002] is applied to a statistically
homogeneous field with a mean calculated from (13) and a
covariance function defined in (33), which is a summation
of five exponential terms (with three correlation lengths: l1,
l2, and lI). By the term ‘‘unimodal moment-based
approach,’’ we mean that the second-order moment-based
approach is applied to an ‘‘equivalent’’ statistically homo-
geneous field with the mean, variance, and integral scale as
shown in the last three columns of Table 1.
[28] The difference between the bimodal (unimodal)

moment-based stochastic approach and the bimodal (unim-
odal) Monte Carlo simulations represents the truncation
error introduced by ignoring higher-order terms in the

Figure 7. Convergence check for case 10 (sY
2 = 6.0), (a and b) for bimodal Monte Carlo simulations and

(c and d) for unimodal Monte Carlo simulations.
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moment-based approach as well as the numerical and
statistical errors that occurred in Monte Carlo simulations.
The difference between the two types of Monte Carlo
simulations indicates how well a bimodal field is approxi-
mated by its ‘‘equivalent’’ unimodal field.
[29] The main purpose of these examples is to discuss the

applicability of the moment-based approaches and the

unimodal Monte Carlo simulations to flow in a bimodal
porous medium. It is also of interest to see if the second-
order bimodal moment-based stochastic model makes any
improvement, compared to the second-order unimodal
moment-based stochastic model.

6. Results and Discussion

[30] For all cases, the mean head predictions derived from
the four different approaches are very close. Figure 8 shows
the mean head computed from the four approaches for case
10, the case with sY

2 = 6.0. However, the variance associated
with the mean head predictions may differ significantly
among different approaches. Figure 9 illustrates the head
variance profiles along the line passing through the center of
the flow domain and parallel to the x1 direction for the four
different approaches, for the cases with p1 = 0.3. The solid
lines in Figure 9 stand for the head variance computed from
the bimodal Monte Carlo simulations (the ‘‘true’’ solution),
the dashed lines stand for results from the bimodal moment-
based stochastic model, the open circles stand for results
from the unimodal Monte Carlo simulations, and the open
squares stand for the unimodal moment-based stochastic
model. Similar plots for the cases with p1 = 0.5 are shown in
Figure 10.
[31] A few observations can be made from Figures 9 and

10. First, when the total variance of the composite bimodal
field is small (for example, sY

2 = 0.94 and 1.10, for cases 1
and 5, respectively), the head variances computed from the
four different approaches are very close, even though the
distribution of log hydraulic conductivity is bimodal and
asymmetric (case 1). This implies that in this situation both
unimodal and bimodal moment-based stochastic models are
applicable to flow in the bimodal porous media. For Monte

Figure 9. Comparison of the head variance obtained from four different approaches for cases 1–4
( p1 = 0.3).

Figure 8. Comparison of the mean head field obtained
from four different approaches for case 10.
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Carlo simulations of flow in a bimodal medium of small
variability, one may either generate bimodal realizations or
simply generate ‘‘equivalent’’ unimodal Gaussian realiza-
tions using the ‘‘equivalent’’ parameters.
[32] Secondly, the bimodal Monte Carlo results are very

close to the unimodal Monte Carlo results in cases 1–4, but
they are significantly different in cases 5–10. We have
conducted a new set of simulations by a different random
generator, the fast Fourier transformation by Gutjahr
[1989], for both unimodal and bimodal Monte Carlo
simulations, and have found consistent results. This indi-
cates that the bimodal field with p1 = 0.3 (i.e., 0.3–0.7
proportions) can be well represented by an equivalent
unimodal field for the considered cases with a relatively
small contrast between the two materials, while the bimodal
field with p1 = 0.5 (i.e., 0.5–0.5 proportions) may not be
adequately represented by a unimodal field with ‘‘equiv-
alent’’ parameters. This is understandable if one realizes
that in cases 5–10, there are two distinct, equally important
modes, while in cases 1–4, one of the two modes domi-
nates. This result implies that instead of conducting bimo-
dal Monte Carlo simulations, one may need only to perform

unimodal Monte Carlo flow simulations if one material is
dominant (in the volumetric fraction) in the bimodal
medium and the contrast between two materials is relatively
small. However, if the volumetric fractions of the two
materials are close, then even for a bimodal field with a
small contrast between the two materials and a small spatial
variation within each material (i.e., case 6), the unimodal
Monte Carlo simulation cannot substitute for the bimodal
Monte Carlo simulation.
[33] Thirdly, for the cases with p1 = 0.3, when sY

2 is
relatively large (for example, case 2), there is a large
difference between the head variances obtained from the
moment-based approaches and the Monte Carlo simulations,
indicating that the truncation errors due to ignoring higher-
order terms in the moment-based approaches are significant
and that the second-order moment-based stochastic
approach is not adequate. It is well documented in the
literature that the unimodal moment-based stochastic model
breaks down for large sY

2 systems. However, for the cases
with p1 = 0.5, the head variances from the moment-based
stochastic approaches and the bimodal Monte Carlo simu-
lations are almost perfectly matched at sY

2 = 4.1 (case 6) and

Figure 10. Comparison of the head variance obtained from four different approaches for cases 5–10
( p1 = 0.5).
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are still reasonably close even at sY
2 = 6.0 (case 10). As

expected for large sY
2 values as in cases 6, 8, and 10, due to

neglecting higher-order terms in the moment-based models,
there exists a large difference between results from the
unimodal moment-based stochastic model and the unimodal
Monte Carlo simulations. However, for these cases there
exists a close match between the moment-based stochastic
model and the bimodal Monte Carlo simulations. This
observation is surprising because the composite variance
of log hydraulic conductivity is larger for these cases than
for cases 2 and 4. Although we do not have a firm
explanation for it, we suspect that this unexpectedly good
match in cases 6, 8, and 10 is related to the fact that the two
categories have 0.5–0.5 volumetric fractions and the vari-
ability in each category is relatively small although the
composite one is large, under which circumstance the
higher-order terms may be small. Being consistent with
our hypothesis, the difference between the moment-based
stochastic approaches and the bimodal Monte Carlo simu-
lations increases, as the increase of spatial variability of Yi
within each material and as the increase of the composite
variance sY

2 (Figures 10b, 10d, and 10f) indicating that the
second-order moment-based stochastic approaches become
less accurate. For case 11 where the contrast in the mean log
hydraulic conductivity is 6 and the variance of each material
is 2.0, leading to a composite variance of sY

2 = 11 (Table 1),
the difference between the moment-based approaches and
the Monte Carlo simulations becomes unacceptably large

(Figure 11). To validate or invalidate this hypothesis, how-
ever, requires an evaluation of higher-order terms truncated
in the second-order moment-based model, perhaps, on the
basis of high-resolution Monte Carlo simulations.
[34] Fourth, comparing to those computed from the unim-

odal moment-based stochastic model, the head variance
obtained from the bimodal moment-based stochastic model
is slightly better in general (i.e., closer to the bimodal Monte
Carlo simulation results), especially when the distribution of
the log hydraulic conductivity is asymmetric and the total
variance ofY is relatively larger (Figures 9c and 9d).When the
distribution of Y has only one peak (due to a small difference
in mean Y between the two materials and a large variation
within each material, sYi

2 = 2.0), as shown in Figures 7c and
7i, the head variances from the four approaches are still
close (Figures 9c and 10e), though the total variance of Y is
large in these two cases (sY

2 = 2.84 and 3.0, respectively).
[35] Finally, it is of interest to note that even if the

composite log hydraulic conductivity field is bimodal
(Figure 6), the hydraulic head field in such a domain is,
in general, unimodal. This may be attributed to the elliptic
nature of the governing flow equation, which regularizes
the bimodal hydraulic conductivity field. Figure 12 shows
the histograms of the hydraulic head at the center of the
domain for cases 2 and 8. An implicit assumption with the
second-order stochastic models is that only the first two
moments are important and applying these models to multi-
modal media may thus be questionable. However, the
observation in Figure 12 that the hydraulic head is not

Figure 12. Histograms of the hydraulic head fields for
cases 2 and 8.

Figure 11. Histograms of the composite log hydraulic
conductivity field and variances of hydraulic head for case
11 ( p1 = 0.5).
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bimodal may explain to some extent the applicability of the
second-order moment-based stochastic models to bimodal
(and, probably, multimodal) media.

7. Conclusions

[36] This study leads to six major conclusions.
1. The correlation lengths of the indicator random

variables are functions of the statistics of materials in the
multimodal porous media, and they cannot be assigned
arbitrarily as done in the literature. For a porous medium
with two materials, the correlation length of the indicator
variable is the harmonic mean of the mean lengths of two
materials, as in (28). If the mean lengths of materials are
direction-dependent, so does the correlation length of the
indicator random variable.

2. When the variance of the composite log hydraulic
conductivity ln Ks field is small, for example sY

2 < 1.0, no
matter what the ln Ks distribution is, the moment-based
stochastic models can be directly applied to a multimodal
porous medium. For Monte Carlo simulations for flow in
the multimodal porous medium, either multimodal Monte
Carlo simulations or simple unimodal Monte Carlo
simulations are appropriate.
3. In the case that one material is dominant (in terms of

the volumetric fraction) and the total variance of the
composite field is relatively high (such as cases 2 and 4),
the unimodal Monte Carlo simulation with ‘‘equivalent’’
parameters constitutes a good approximation. Under these
circumstances, truncated moment-based stochastic models
suffer the same well known limitation of nominally small
variance for flow in unimodal media. This limitation has
been attributed to the higher-order terms truncated, which
can be large. However, if none of these materials
dominates, it is surprising that the results from the truncated
moment-based models and from the multimodal Monte
Carlo simulations are in excellent agreement for sY

2 = 4.1
and in still reasonably good agreement even at sY

2 = 6.0.
This may imply that the higher-order terms ignored in the
moment-based models are not significant for these cases.
Of course, a further increase of sY

2 leads to a larger
difference between the truncated moment-based models and
the Monte Carlo simulations, as shown in Figure 11 for
case 11 (sY

2 = 11.0).
4. Although in some cases the results from the moment-

based model with a covariance function of multiple
correlation lengths are slightly better than those from the
unimodal moment-based model, they are almost the same
in most of the cases examined. This suggests that either
multimodal or unimodal moment-based stochastic models
may be used.
5. Even if the composite log hydraulic conductivity field

is multimodal, the hydraulic head field is, in general,
unimodal. This may explain to some extent the applic-
ability of the second-order moment-based stochastic models
to flow in multimodal media.
6. The applicability of the second-order moment-based

stochastic models to a multimodal porous medium is limited
by the fact that in reality the mean log hydraulic
conductivities between different materials may differ by
several orders of magnitude. Thus, the total variance of the ln
Ks can be very large, as in case 11 where the contrast of mean
log hydraulic conductivity is 6. In the latter case, the ratio of

the mean hydraulic conductivities of two materials is 403,
which is not uncommon in sandstone/shale formations.

Appendix A

[37] From (23) and (24), it is clear that, for a bimodal
porous medium with given proportion p1 and one mean
length, say L1, the transition rate matrix R must be in the
following format:

R ¼ 
1=L1 1=L1
p1=p2L1 
p1=p2L1

� �
ðA1Þ

where p2 = 1 
 p1. Two eigenvalues of R are h1 = 0 and
h2 = 
1/p2L1 = 
1/p1L2 = 
(L1 + L2)/L1L2. The spectral
component matrices corresponding these eigenvalues can be
calculated

Z1 ¼
Y
m6¼1

hmE 
 Rð Þ=
Y
m6¼1

hm 
 h1ð Þ ¼ h2E 
 R

h2 
 h1
¼ p1 p2

p1 p2

� �

ðA2Þ

and

Z2 ¼
Y
m 6¼2

hmE 
 Rð Þ=
Y
m6¼2

hm 
 h2ð Þ ¼ h1E 
 R

h1 
 h2
¼ p2 
p2


p1 p1

� �
:

ðA3Þ

Substituting (A2) and (A3) into (18), one gets

T ¼ tij

 �

¼ p1 p2
p1 p2

� �
þ e


 h
lI

p2 
p2

p1 p1

� �
ðA4Þ

where lI = L1L2/(L1 + L2) is the harmonic mean of the two
mean lengths.

Appendix B

[38] For a porous medium with three different materials,
(23) and (24) give five independent equations. If propor-
tions of all three categories are known (maybe from other
directions) and one mean length in the direction is known,
then we are able to specify all three diagonal terms of the
transition rate matrix R. We can solve rij with one free
variable and R has the following format:

R ¼

 1

L1

1
L3r
L1

L3r
L1

L3r
L2


 1
L2

1
L3r
L2

1
L3r
L3

r 
 1
L3

2
64

3
75 ðB1Þ

where r is a free variable satisfying 0 � r � 1/L3. The
eigenvalues of R are h1 = 0 and

h2;3 ¼ 
 1

2

1

L1
þ 1

L2
þ 1

L3

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L1
þ 1

L2
þ 1

L3

� �2


4
L1 þ L2 þ L3

L1L2L3
L23r

2 
 L3r þ 1

 �s

:

ðB2Þ
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The spectral component matrices corresponding to these
eigenvalues can be evaluated using (17)

Z1 ¼
p1 p2 p3
p1 p2 p3
p1 p2 p3

2
4

3
5

Z2 ¼
1

h2 
 h3
h3 Z1 
 Eð Þ þ R½ � ðB3Þ

Z3 ¼
1

h3 
 h2
h2 Z1 
 Eð Þ þ R½ �;

and the transition probability matrix can be written as

T hð Þ ¼ Z1 þ
eh2h

h2 
 h3
h3 Z1 
 Eð Þ þ R½ �

þ eh3h

h3 
 h2
h2 Z1 
 Eð Þ þ R½ �: ðB4Þ
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